HLA Testing

Share this page:
Also known as: Tissue Typing; HLA Typing; Histocompatibility Testing; HLA Crossmatching; HLA Antibody Testing/Screening/Identification
Formal name: Human Leukocyte Antigen; HLA Oligotyping; HLA Sequence-based Typing
Related tests: Blood Typing; HLA-B27; HLA-A, B, C, DR and DQ

At a Glance

Why Get Tested?

To identify which human leukocyte antigen (HLA) genes and antigens a person has inherited, primarily to match up donors and recipients of organ and bone marrow transplants and to detect antibodies to HLA antigens that would cause transplants to be unsuccessful

When to Get Tested?

Most often, transplant recipients are tested when it is determined that they need an organ or bone marrow transplant, prior to seeking and selecting a suitable donor; potential donors are tested when they are being evaluated for compatibility with a specific recipient or are signing up with a national donor registry.

Sample Required?

A blood sample drawn from a vein in your arm; sometimes, for HLA typing, a swab from the inside of the cheek (buccal swab)

Test Preparation Needed?


The Test Sample

What is being tested?

Human leukocyte antigens (HLA) are part of the major histocompatibility complex or MHC. They refer to certain specialized proteins (antigens) present on the surface of all nucleated cells in the body and the genes that code for them. Everyone has an inherited combination of HLA antigens present on the surface of his or her white blood cells (leukocytes) and other cells that contain a nucleus. HLA testing identifies the major HLA genes a person has inherited and their corresponding antigens that are present on the surface of their cells.

HLA antigens and the MHC system play an important role in the management of the immune system. They help the body's immune system distinguish which cells are "self" and which are "foreign" or "non-self." Any cells that are recognized as "non-self" can trigger an immune response, including the production of antibodies. HLA antibody testing is also performed on transplant recipients to determine if there are any antibodies present that would target the donated organ or tissue.

This is important in medicine when transplanting tissue or an organ(s). In bone marrow transplants, the HLA genes that the donor and recipient have need to be the same or match as closely as possible for a transplant to be successful and for the tissue not be attacked or rejected by the recipient's immune system. Also, bone marrow donors and recipients must match closely so that the immune cells (lymphocytes) in the donated bone marrow do not attack the recipient's cells in a process called graft-versus-host disease (GVHD; see Common Questions #4).

In solid organ transplants, such as kidney or lung transplants, it is ideal to match the antigens between the donor and recipient; however, the typing incompatibilities are less critical as long as the recipient has not produced antibodies directed against donor's antigens. Various drugs may be administered to help suppress the recipient’s immune system in order to minimize organ rejection.

When the donor organ is compatible with the intended recipient, it is less likely to be rejected in the immediate post-transplant period. HLA testing, along with ABO blood typing, is used to identify and match organ and tissue transplant donors with recipients who have the same or an acceptable number of matching HLA genes and antigens.

Finding a donor who is compatible with an intended recipient may sometimes be difficult. Part of the reason is because each particular HLA gene can have numerous possible forms or variations (alleles). This is referred to as polymorphic. In addition, there are more than 200 genes that make up the large "gene family" of the HLA system. With many different possible combinations and numerous HLA genes to take into account, it can be a challenge to find a suitable donor.

However, HLA genes that are located close together, as seen on chromosome 6, are inherited together as groups known as haplotypes; thus, a child inherits one haplotype from each parent. Because of this, there is a greater chance that family members will have the same group of HLA genes compared with non-related potential donors. Often, a recipient's parents, children, or siblings may serve as the best transplant matches.

Example of inheritance of HLA haplotypes

Read the article on The Universe of Genetic Testing for more on inheritance and the HLA system.

How is the sample collected for testing?

A blood sample is obtained by inserting a needle into a vein in the arm. Sometimes, for HLA typing, a swab of cells is collected from the inside of the cheek (a buccal swab).

NOTE: If undergoing medical tests makes you or someone you care for anxious, embarrassed, or even difficult to manage, you might consider reading one or more of the following articles: Coping with Test Pain, Discomfort, and Anxiety, Tips on Blood Testing, Tips to Help Children through Their Medical Tests, and Tips to Help the Elderly through Their Medical Tests.

Another article, Follow That Sample, provides a glimpse at the collection and processing of a blood sample and throat culture.

Is any test preparation needed to ensure the quality of the sample?

No test preparation is needed.

The Test

Common Questions

Ask a Laboratory Scientist

This form enables you to ask specific questions about your tests. Your questions will be answered by a laboratory scientist as part of a voluntary service provided by one of our partners, American Society for Clinical Laboratory Science. If your questions are not related to your lab tests, please submit them via our Contact Us form. Thank you.

* indicates a required field

Please indicate whether you are a   

You must provide a valid email address in order to receive a response.

| Read The Disclaimer

Spam Prevention Equation

| |

Article Sources

« Return to Related Pages

NOTE: This article is based on research that utilizes the sources cited here as well as the collective experience of the Lab Tests Online Editorial Review Board. This article is periodically reviewed by the Editorial Board and may be updated as a result of the review. Any new sources cited will be added to the list and distinguished from the original sources used.

Sources Used in Current Review

Greco, F. (Updated 2011 February 2). Histocompatibility antigen test. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/003550.htm through http://www.nlm.nih.gov. Accessed November 2013.

(© 1996-2013). HLA Matching. Be the Match [On-line information]. Available online at http://bethematch.org/For-Patients-and-Families/Finding-a-donor/HLA-matching/ through http://bethematch.org. Accessed November 2013.

Malhotra, P. et. al. (Updated 2013 April 16) Immunology of Transplant Rejection. Medscape Reference [On-line information]. Available online at http://emedicine.medscape.com/article/432209-overview#showall through http://emedicine.medscape.com. Accessed November 2013.

(© 1995-2013). HLA Class II Molecular Typing Disease Association. Mayo Clinic Mayo Medical Laboratories [On-line information]. Available online at http://www.mayomedicallaboratories.com/test-catalog/Overview/34990 through http://www.mayomedicallaboratories.com. Accessed November 2013.

(© 1995-2013). HLA Class I Molecular Typing Disease Association. Mayo Clinic Mayo Medical Laboratories [On-line information]. Available online at http://www.mayomedicallaboratories.com/test-catalog/Overview/89185 through http://www.mayomedicallaboratories.com. Accessed November 2013.

(© 2013). HLA Typing/Matching. UC Davis Transplant Center [On-line information]. Available online at http://www.ucdmc.ucdavis.edu/transplant/learnabout/learn_hla_type_match.html through http://www.ucdmc.ucdavis.edu. Accessed November 2013.

Pagana, K. D. & Pagana, T. J. (© 2011). Mosby's Diagnostic and Laboratory Test Reference 10th Edition: Mosby, Inc., Saint Louis, MO. Pp 561.

McPherson, R. and Pincus, M. (© 2011). Henry's Clinical Diagnosis and Management by Laboratory Methods 22nd Edition: Elsevier Saunders, Philadelphia, PA. Pp 946-947.

Sources Used in Previous Reviews

(Reviewed 2009 February). HLA gene family. Genetics Home Reference [On-line information]. Available online at http://ghr.nlm.nih.gov/geneFamily=hla through http://ghr.nlm.nih.gov. Accessed November 2009.

Malhotra, P. et. al. (Updated 2009 July 28). Immunology of Transplant Rejection [On-line information]. Available online at http://emedicine.medscape.com/article/432209-overview through http://emedicine.medscape.com. Accessed November 2009.

Delves, P. (Revised 2008 September). Human Leukocyte Antigen (HLA) System. Merck Manual for Healthcare Professionals [On-line information]. Available online at http://www.merck.com/mmpe/sec13/ch163/ch163c.html#sec13-ch163-ch163c-70 through http://www.merck.com. Accessed November 2009.

Cassinotti, A. et. al. (© 2009). HLA and Autoimmune Digestive Disease: A Clinically Oriented Review for Gastroenterologists. Am J Gastroenterol 2009; 104:195–217 [On-line information]. Available online at http://www.nature.com/ajg/journal/v104/n1/full/ajg200810a.html through http://www.nature.com. Accessed November 2009.

Hahn, A. ( © 2008). About Histocompatibility and Immunogenetics. American Society for Histocompatibility and Immunogenetics (ASHI) [On-line information]. PDF available for download at http://www.ashi-hla.org/docs/news/ASHI_Science_fact_sheet_Web.pdf through http://www.ashi-hla.org. Accessed November 2009.

Greco, F. (Updated 2009 January 1). Histocompatibility antigen test. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/003550.htm. Accessed November 2009.

Murphey, C. and Forsthuber, T. (2008 July 07). Trends in HLA Antibody Screening and Identification and Their Role in Transplantation. Medscape from Expert Review of Clinical Immunology [On-line information]. Available online at http://www.medscape.com/viewarticle/575925 through http://www.medscape.com. Accessed November 2009.

Kankonkar (2003 October). HLA – SYSTEM. Bombay Hospital Journal. [On-line information]. Available online at http://www.bhj.org/journal/2003_4504_oct/hla_system_549.htm through http://www.bhj.org. Accessed November 2009.

Williams, T. (2001 August). Human Leukocyte Antigen Gene Polymorphism and the Histocompatibility Laboratory. Journal of Molecular Diagnostics, v3(3) [On-line information]. Available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1906958/?tool=pubmed through http://www.ncbi.nlm.nih.gov. Accessed November 2009.

(Revised 2009 October). What Is a Blood and Marrow Stem Cell Transplant? National Heart Lung and Blood Institute [On-line information]. Available online at http://www.nhlbi.nih.gov/health/dci/Diseases/bmsct/bmsct_whatis.html through http://www.nhlbi.nih.gov. Accessed November 2009.

Smith, S. (2002 June 17). Immunologic Aspects of Organ Transplantation. Medscape from Organ Transplantation: Concepts, Issues, Practice, and Outcomes [On-line information]. Available online at http://www.medscape.com/viewarticle/436533_print through http://www.medscape.com. Accessed November 2009.

Waknine, Y. (2007 December 13). FDA Warns of Genetic Link to Carbamazepine Skin Reactions. Medscape Today [On-line information]. Available online at http://www.medscape.com/viewarticle/567436 through http://www.medscape.com. Accessed November 2009.

Henry's Clinical Diagnosis and Management by Laboratory Methods. 21st ed. McPherson R, Pincus M, eds. Philadelphia, PA: Saunders Elsevier: 2007 Pp 883-890.

Encyclopedia of Surgery: A Guide for Patients and Caregivers: Human Leukocyte Antigen Test. Available online at http://www.surgeryencyclopedia.com/Fi-La/Human-Leukocyte-Antigen-Test.html through http://www.surgeryencyclopedia.com. Accessed February 2010.

(June 2, 2004) University of Texas Medical Branch: The Kidney Transplant Process. Available online at http://www.utmb.edu/renaltx/process.htm through http://www.utmb.edu. Accessed February 2010.

Anne Halpin CHS MSc BSc MLT. Laboratory Scientist, Histocompatibility Laboratory, University of Alberta Hospital.