Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization and does not endorse non-AACC products and services.

Blood Banking

Print this article
Share this page:

Ensuring Proper Use

Blood Typing
Blood typing involves testing a person's blood for the presence or absence of certain antigens that are present on the red blood cells. Two of these antigens, or surface identifiers, are the A and B markers included in ABO typing. People whose red blood cells have A antigens are considered to be blood type A; those with B antigens are type B; those with both A and B antigens are type AB; and those who do not have either of these makers are considered to have blood type O. Our bodies produce antibodies against those ABO antigens we do not have on our red blood cells, which is why we can receive blood only from donors with certain blood types.

Another important surface antigen is called Rh factor. If it is present on your red blood cells, your blood is Rh+ (positive); if it is absent, your blood is Rh- (negative).

According to AABB, the distribution of blood types in the U.S. is as follows:

  • O Rh-positive 38%
  • A Rh-positive 34%
  • B Rh-positive 9%
  • O Rh-negative 7%
  • A Rh-negative 6%
  • AB Rh-positive 3%
  • B Rh-negative 2%
  • AB Rh-negative 1%

ABO and Rh blood typing are conducted on all donor units by the collection facility and in the laboratory for hospital patients. There are two steps to ABO typing: forward and reverse typing. First, forward typing is performed by mixing a sample of blood with anti-A serum (serum that contains antibodies against type A blood) and with anti-B serum (serum that contains antibodies against type B blood). Whether the blood cells stick together (agglutinate) in the presence of either of these sera determines the blood type. Second, in reverse typing, the patient's serum is mixed with blood that is known to be either type A or B to watch for agglutination. A person's blood type is confirmed by the agreement of these two tests.

Similarly, with Rh typing a sample of a person's red blood cells is mixed with an anti-serum containing anti-Rh antibodies. If agglutination occurs, then the blood is Rh-positive; if no reaction is observed, then the blood is Rh-negative. Rh testing is especially important during pregnancy because a mother and her fetus could be incompatible. If the mother is Rh-negative but the father is Rh-positive, the fetus may be positive for the Rh antigens. As a result, the mother's body could develop antibodies against Rh, which can destroy the baby's red blood cells. To prevent development of Rh antibodies, an Rh-negative mother with an Rh-positive partner is treated with an injection of Rh immunoglobulin during the pregnancy and again after delivery if the baby is Rh-positive.

Compatibility Testing
Compatibility testing is performed to determine if a particular unit of blood can be transfused safely into a certain patient. This includes ABO-Rh blood typing (see above), antibody screening (for unexpected red blood cell antibodies that could cause problem in the recipient), and cross-matching.

There are many antigens besides A, B, and Rh. However, neither the donor nor the recipient is tested routinely for these other antigens. However, if a patient has had a previous transfusion or been pregnant, they may have developed antibodies to one of these other antigens. Therefore, it will be important in all future transfusions that the donor's red blood cells do not have that particular antigen; otherwise, the recipient may have a transfusion reaction. The presence of such an antibody is determined by doing an antibody screening test by mixing the patient's serum with red cells of a known antigenic makeup.

Cross-matching is performed to determine if the patient has antibodies that react with the donor's cells. If there is a reaction, the laboratory staff will investigate further to identify the specific antibody and locate donor units that lack the antigen that matches the patient's antibody. This unit will then be tested to confirm that this is a safe match.

It is ideal to receive a blood transfusion with blood that matches your blood type exactly. However, anyone can receive type O red blood cells in an emergency. Therefore, people with type O blood (particularly O Rh-negative) are called "universal donors." People with type AB Rh-positive blood can be transfused with red blood cells from individuals of any ABO type and are commonly referred to as "universal recipients."

« Prev | Next »